

可见光掺稀土光纤激光器研究进展: 从连续波至飞秒脉冲(特邀)

罗正钱^{1,2*}, 宋鲁明¹, 阮秋君^{1,2}

¹福建省超快激光技术及应用重点实验室(厦门大学),福建 厦门 361005; ²厦门大学深圳研究院,广东 深圳 518129

摘要 位于人眼可见波段(380~780 nm)的激光,在显示、生物医疗、精密加工、精密光谱、光通信等领域有着重要的 应用价值。在众多可见光激光的产生方法中,可见光掺稀土光纤激光器因具有高效率、高光束质量、结构简单且免 维护等优势,近年来受到国内外的广泛关注。对可见光掺稀土光纤激光器的研究进展进行了详细综述,介绍了可见 光连续波光纤激光器、可见光调 Q脉冲光纤激光器及可见光锁模脉冲光纤激光器的产生方式和特点。最新研究进 展表明,其可覆盖蓝(~480 nm)、青(~491 nm)、绿(~520 nm)、黄(~573 nm)、橙(~605 nm)、红(~635 nm)及深红 (~717 nm)等丰富的可见光波长,全光纤可见光输出功率已迈向10 W,而且可见光锁模超短脉冲宽度已窄至 <200 fs。结合应用需求,简要展望了可见光波段光纤激光器的发展趋势。

关键词 激光器;可见光激光;掺稀土光纤激光器;连续波;调Q;锁模中图分类号 TN248 文献标志码 A

1引言

波长位于 380~780 nm 的可见光激光由于其独特 的人眼可见性及不可替代的价值,已被应用于许多领 域,如显示、生物医疗、激光加工等^[1-3]。在显示领域, 可见光激光极大地提高了显示与投影的色域和饱和 度^[4];在医疗领域,蓝光可用于治疗婴儿黄疸^[5],黄光可 用于治疗黄褐斑、鲜红斑、皮肤血管瘤等^[6];在激光加 工领域,大多材料在可见光波段具有良好的吸收,特别 是金银铜等高反材料,因此利用蓝绿激光进行加工具 有独特优势。蓝绿激光是水下透明窗口,载波频率高, 抗干扰能力强,常用于水下光通信、探测和遥感等^[7]。 由于诸多领域具有重大的应用需求,可见光激光一直 是激光领域的重要研究对象,得到了国内外科研人员 的广泛关注。

从实现方式来看,半导体、气体、染料、固体和光纤激光器都可以直接产生可见光激光^[8-15],如图1所示。 然而,可见光半导体激光器(LD)输出的光束质量较差,并且难以实现脉冲激光输出^[16-17];可见光气体激光器一般需要使用稀有气体激光管和超高压驱动电 源^[18-20],成本高且体积庞大;可见光染料激光器采用染 料作为激光介质^[13],有较宽的发射带,但染料存储和搬 运困难,染料循环系统复杂且需频繁维护;可见光全固

DOI: 10.3788/CJL231233

态晶体激光器通常面临自由空间光路对准及精确的热管理等问题,系统相对复杂、不紧凑,同时现有的可见光晶体材料(如Pr³⁺:YLF)^[14,17]具有较窄带的发射特性,产生超短飞秒脉冲的能力受限。另外,基于非线性频率转换技术的激光器(如倍频、合频、光参量等)也可获得可见光激光^[21-23],但稳定性和鲁棒性较差,转换效率相对较低,价格昂贵。可见光光纤激光器通常使用掺稀土光纤作为增益介质^[24-25],拥有较宽的荧光谱线(如掺Dy³⁺光纤在黄光波段的发射带带宽可达 30 nm)^[26],并且具有效率高、光束质量好、无需散热、易于全光纤小型化等优点,因而备受关注,是激光研究领域着力发展的重要方向。

从20世纪80年代起发展至今,可见光稀土光纤激 光器研究取得重要进展,波长从蓝光至深红光,可覆盖 整个可见光区域,输出功率也从几毫瓦提升至数瓦量 级^[27],并且运转方式多样,既可连续波运转,又可工作 在脉冲模式,目前最短脉冲宽度<200 fs^[28]。本文围绕 实现可见光稀土光纤激光器的技术路径,对上转换和 下转换方法产生可见光激光的相关研究进行了综述, 分析讨论了不同技术方案的特点,主要包括可见光连 续波稀土光纤激光器、可见光调*Q*脉冲稀土光纤激光 器及可见光锁模脉冲稀土光纤激光器。最后结合实际 应用需求,对可见光波段稀土光纤激光器的未来发展

收稿日期: 2023-09-26; 修回日期: 2023-10-23; 录用日期: 2023-10-25; 网络首发日期: 2023-11-01

基金项目: 国家自然科学基金(62022069,62235014)、深圳市科技项目(JCYJ20210324115813037)

通信作者: *zqluo@xmu.edu.cn

图 1 可见光激光源及工作波段^[12] Fig. 1 Visible laser sources and their available wavelengths^[12]

趋势进行了展望。

2 掺稀土氟化物光纤特性

目前,采用掺 Pr³⁺、Dy³⁺、Tb³⁺、Ho³⁺或 Tm³⁺氟化物 光纤作为增益介质的可见光光纤激光器可覆盖可见光 全波段^[24-25],这得益于其特殊的能级结构及光谱特性。

 Pr^{3+} 是一种能通过受激辐射跃迁产生多种可见光 波长发射的稀土离子,拥有蓝光、绿光、橙光、红光和深 红光等丰富的可见光波段跃迁能级结构。Adam等^[29] 首次报道了掺 Pr^{3+} 可见光激光器。 Pr^{3+} 的能级结构如 图 2(a)所示。其中, Pr^{3+} 掺杂增益材料最有效的激发 谱线对应³H₄→³P₂跃迁,位于 443 nm 处,与商用 GaN 半导体激光器的输出波长相匹配。在 443 nm 激光泵 浦下,粒子从基态能级³H₄受激吸收跃迁到激发态³P₂ 能级,由于³P₂能级与下能级¹I₆、³P₁和³P₀的能量间隔很 小,粒子快速弛豫到³P₁和³P₀能级,通过辐射跃迁产生 可见光荧光发射。 Pr^{3+} 在可见光波段的发射峰主要有 5个,分别对应³P₀→³H₄(491 nm)、¹I₆+³P₁→³H₅(520 nm)、 ³P₀→³H₆(605 nm)、³P₀→³F₂(635 nm)以及³P₀→³F₄(715 nm) 能级跃迁。

 Dy^{3+} 掺杂增益介质常用于实现黄色激光输出,其 能级结构如图2(b)所示。 Dy^{3+} 的⁴F_{9/2}能级为亚稳态能 级,寿命约为1ms,根据其受激吸收的能级跃迁,常用 蓝光LD泵浦(400 nm和450 nm)。5条主要的发射谱 线分别对应⁴F_{9/2}→⁶H_{15/2}(485 nm)、⁴F_{9/2}→⁶H_{13/2}(573 nm)、 ⁴F_{9/2}→⁶H_{11/2}(660 nm)和⁴F_{9/2}→⁶H_{9/2}+⁶F_{11/2}(749 nm)能 级跃迁。其中:⁴F_{9/2}→⁶H_{13/2}跃迁产生的573 nm激光常 用来实现黄色激光输出;660 nm和749 nm发射由于发 射截面较小,很少用于实现激光输出。

Tb³⁺常作为绿光激光器的增益介质激活离子,其 能级示意图如图 2(c)所示,是典型的四能级系统,蓝 光将基态能级⁵F₆上的粒子泵浦到⁵D₃,粒子无辐射跃 迁至亚稳态能级⁵D₄上,最终在亚稳态能级⁵D₄和激光 下能级⁷F₁(量子数 J=6,5,4,3)间发生受激辐射跃迁, 实现激光输出。可以发现,⁵D₄→⁷F₁(J=6,5,4,3)跃迁 能获得4条主要发射谱线,分别位于485、540、600、 620 nm 处。其中,⁵D₄→⁷F₅受激辐射跃迁产生的540 nm 绿光最强,且光谱较窄。

由 Pr³⁺、Dy³⁺、Tb³⁺的能级结构可知,均是蓝光泵 浦产生可见光激射,因而它们成为直接下转换产生可 见光激光的主要材料,这种直接下转换具有效率高、结 构紧凑、稳定性好的优势。

Ho³⁺除了实现2µm左右的近红外激光输出外,也 常用于实现可见光激光输出。在可见光区域,其能级 结构如图2(d)所示,常用645 nm及450 nm激光作为 泵浦源,可分别用于上转换和下转换激射。发射谱线 主要对应⁵F₄→⁵I₈、⁵S₂→⁵I₈和⁵F₄→⁵I₇、⁵S₂→⁵I₇跃迁,发射 波长分别为550 nm和750 nm。

Tm³⁺常用于实现近红外激光,但也可用于上转换 实现蓝光激光输出。在可见光区域,其能级结构如 图 2(e)所示,常用 645、680、1150、1200 nm激光作为泵 浦源,发射谱线主要对应 ${}^{1}D_{2}$ → ${}^{3}F_{4}$ 和 ${}^{1}G_{4}$ → ${}^{3}H_{6}$ 跃迁,发 射波长分别为 455 nm 和 484 nm。

常用于实现上转换发光的稀土材料为 Pr^{3+}/Yb^{3+} 共掺材料,从图2(f)可知,Yb³⁺的²F_{5/2}能级与 Pr^{3+} 的¹G₄ 能级的能量相当,两能级之间可以产生能量传递,因此

Yb³⁺对 Pr³⁺具有敏化作用。Yb³⁺通过基态吸收跃迁 至²F_{5/2}能级,Yb³⁺把能量传递给Pr³⁺,使Pr³⁺跃迁至¹G₄ 能级,进一步通过激发态吸收跃迁至³P_L(角量子数 L=0,1,2)能级。由于³P_L与¹G₄之间的能量差和激发 光子的能量相匹配,故也会产生重吸收。辐射跃迁产生 的可见光荧光,主要有5条发射带:³P₀→³H₄(491 nm)、 ¹ I_6 +³ P_1 →³ H_5 (520 nm)、³ P_0 →³ H_6 (605 nm)、³ P_0 →³ F_2 (635 nm)以及³ P_0 →³ F_4 (715 nm)。

第51卷第1期/2024年1月/中国激光

掺 Pr³⁺、Dy³⁺、Tb³⁺、Ho³⁺、Tm³⁺或 Pr³⁺/Yb³⁺氟化 物光纤具有丰富的能级结构,因此掺稀土氟化物光纤 作为增益介质可以满足可见光各个波段的激射需求, 为可见光光纤激光器的发展奠定了很好的基础。

图 2 掺稀土氟化物光纤能级^[28-35]。(a)掺 Pr³⁺氟化物光纤能级;(b)掺 Dy³⁺氟化物光纤能级;(c)掺 Tb³⁺氟化物光纤能级;(d)掺 Ho³⁺ 氟化物光纤能级;(e)掺 Tm³⁺氟化物光纤能级;(f)掺 Pr³⁺/Yb³⁺氟化物光纤能级

Fig. 2 Energy levels of rare-earth-doped fluoride fiber^[28-35]. (a) Energy levels of Pr³⁺-doped fluoride fiber; (b) energy levels of Dy³⁺-doped fluoride fiber; (c) energy levels of Tb³⁺-doped fluoride fiber; (d) energy levels of Ho³⁺-doped fluoride fiber; (e) energy levels of Tm³⁺-doped fluoride fiber; (f) energy levels of Pr³⁺/Yb³⁺-doped fluoride fiber

3 可见光连续波光纤激光器

1988年,Farries等^[36]用氩离子蓝光半导体激光器 泵浦掺Sm³⁺石英光纤,率先制备了第一台红光光纤激 光器。此后,陆续开展了各个波段的可见光光纤激光 器研究,包括波长位于410~790 nm的蓝光、青光、绿 光、黄光、橙光、红光和深红光光纤激光器等。到目前 为止,关于可见光连续波光纤激光器的研究,按照发光 方式可以划分为上转换(反斯托克斯)和下转换(斯托 克斯)两类。上转换是长波(近红外)激光泵浦激励的 频率上转换可见光光纤激光器^[37-38],下转换是短波(蓝 光)激光泵浦的频率下转换可见光光纤激光器^[37-38],下转换是短波(蓝 光)激光泵浦的频率下转换可见光光纤激光器^[39-40]。 一般而言,上转换过程因多光子泵浦源跃迁过程,可见 光激光效率较低,输出功率不高;下转换过程通常可获 得更高的转换效率和激光功率。下面将分别对上述两 类激光器的研究进展进行归纳总结。

3.1 上转换可见光掺稀土光纤激光器

大多数可见光掺稀土光纤激光器是以掺 Pr³⁺氟化 物光纤(Pr³⁺:ZBLAN)为增益介质的^[29]。下面将以掺

Pr³⁺氟化物连续波(CW)光纤激光器为主线^[41],以其他稀土材料(如Ho³⁺、Er³⁺、Tm³⁺和Nd³⁺等)掺杂的连续波光纤激光器为辅线^[30-33],展开相关研究介绍。表1列出了上转换可见光掺稀土光纤激光器的代表性研究成果。

1991年,法国国家通信研究中心的 Allain 等^[37]使 用~850 nm 激光泵浦 Pr/Yb:ZBLAN 光纤,成功实现 了 635 nm 红光的激射,输出功率为 20 mW,斜效率为 10%。为了进一步提升上转换激射的效率,1995年, 美国洛斯阿拉莫斯国家实验室的 Xie 等^[42]通过减小 Pr/Yb:ZBLAN 光纤芯径尺寸和提高 Pr³⁺掺杂浓度的 方法,成功实现了更高效的 635 nm 红光激射,斜效率 可达 42%,输出功率为 300 mW。同年,悉尼大学的 Zhao 等^[59]报道了 835 nm 和 1017 nm LD 直接泵浦的掺 Pr³⁺氟化物光纤,产生了功率超过 30 mW 的 492 nm 蓝 光激光。为了进一步提高蓝光功率,1999年,耶拿大 学的 Zellmer 等^[44]采用具有更高功率(1.6 W)的 850 nm 钛蓝宝石激光泵浦 Pr/Yb:ZBLAN 光纤,最终将蓝光 输出功率由 30 mW 提升到 165 mW,斜效率为14.3%。

	1		*				
Gain fiber	Pump type	Pump wavelength / nm	Output wavelength / nm	Output power /mW	Slope efficiency /	Year	
	Ti: sapphire	840-850	635	20	10	1991[37]	
Pr/Yb:ZBLAN	Ti: sapphire	860	635	300	52	1995 ^[42]	
	Ti: sapphire	850	635	1020	19	1997 ^[43]	
	Ti: sapphire	850	491	165	12.1	1999[44]	
-	LD	050	635	2060	45	2002 ^[45]	
	LD	850	520	320	17		
Pr:ZBLAN			635	~180	_	1991 ^[46]	
	Ti:sapphire	835,1010	605	$\sim \! 30$	_		
			520	~ 1	_		
	LD	830,1020	492	~1	~1	1996 ^[47]	
	Kr^+	647.1	550	10	20	1990 ^[48]	
Ho:ZBLAN	LD	643	$\sim \! 549$	38	24	1996 ^[49]	
	Solid-state laser	640	543.1	980	34.2	2021[50]	
Er:ZBLAN	Ti: sapphire	801	546	23	11	1991[51]	
	Ti:sapphire	970	544	50	15	1992 ^[52]	
	HeNe	633	470	0.04	3	2002 ^[53]	
Tm:ZBLAN	Kr^+	676,647	455,480	0.4	~0.2	1990 ^[54]	
	LD	1130	482	106	30	1995[55]	
	Nd:YAG	1123	481	230	18.5	1997 ^[56]	
	Fiber laser	1120	784	5	0.7	2005[57]	
Nd:ZBLAN	_	~590	412	0.5	1.5	1995 ^[58]	

表1 上转换可见光连续波光纤激光器的代表性研究成果 Table 1 Representative research achievements of up-conversion visible CW fiber lasers

此外,为了进一步提升红、绿光功率,同时充分发挥LD 泵浦源的潜力,上转换产生激光的技术逐渐转向了LD 直接泵浦大芯径或双包层(DC)掺杂稀土离子的光纤。 2002年,耶拿大学的Zellmer等^[45]用合束的多模850 nm LD泵浦大芯径 Pr/Yb:ZBLAN 光纤,将635 nm 红光 和520 nm 绿光功率分别提升至2.06 W和0.32 W,其 中红光和绿光的斜效率分别为45%和37%,其振幅噪 声的均方根(RMS)为0.27%。

另外,除了采用掺 Pr^{3+} 氟化物光纤外,掺 Ho^{3+} 、 Er^{3+} 、 Tm^{3+} 和 Nd^{3+} 氟化物光纤也常被用于产生可见光 上转换激光^[48,51,54,58]。由表1可知,从20世纪90年代初 开始,法国国家通信研究中心、美国伊利诺伊大学厄巴 纳-香槟分校、南安普敦大学以及厦门大学等研究团队 陆续报道了掺稀土(掺 Ho^{3+} 、掺 Er^{3+} 、掺 Tm^{3+} 、掺 Nd^{3+})氟化物光纤的上转换光纤激光器。1990年,法 国国家通信研究中心的 Allain 等^[48]用 647 nm的 Kr^+ 泵 浦源泵浦掺 Ho^{3+} 氟化物光纤,实现了 540~553 nm 可 调谐的绿光激光,输出功率只有 10 mW,斜效率为 20%。1996年,美国伊利诺伊大学厄巴纳-香槟分校的 Funk等^[49]用 643 nm 泵浦源泵浦不同长度(20~86 cm) 掺 Ho³⁺氟化物光纤,实现了 539~550 nm 可调谐的绿 光激光,绿光最大输出功率提升至 38 mW,斜效率达 到 24%。直到 2021年,厦门大学的 Ji等^[50]成功将上转 换绿光光纤激光器的输出功率提升至瓦级。该工作用 640 nm 光源泵浦 Ho³⁺: ZFG 光纤,激光输出波长在 535~553 nm 范围内可调谐,波长为 543.1 nm 的激光 线 宽为 1.3 nm,最大输出功率为 0.98 W,斜效率为 34.2%,具体如图 3所示。

3.2 下转换可见光掺稀土光纤激光器

随着蓝光半导体激光器的不断发展以及氟化物光 纤制造工艺的日趋成熟,利用高功率蓝光半导体激光 作为泵浦源,下转换可见光稀土光纤激光器也得到较 快发展。表2总结了近几年下转换可见光稀土光纤激 光器的代表性研究成果。目前下转换可见光光纤激光 大多采用GaN 蓝光或氩离子激光泵浦掺 Pr³⁺、Ho³⁺、 Dy³⁺或 Tb³⁺氟化物光纤来获得深红光、红光、橙光、黄 光、绿光和青光。下面按照波长划分,分别讨论其实现 方案及输出特性。

图 3 Ho³⁺:ZBLAN 高功率连续波光纤激光器^[50]。(a)实验装置;(b)可调谐光谱图;(c)543.1 nm激光线宽;(d)斜效率 Fig. 3 Ho³⁺: ZBLAN high power CW fiber lasers^[50]. (a) Experimental setup; (b) tunable spectrum; (c) line width of 543.1 nm laser; (d) slope efficiency

	表 2	下转换可见光连续波光纤激光器的代表性研究成果
Table 2	Representa	ative research achievements of down-conversion visible CW fiber lasers

Gain fiber	Pump type	Pump wavelength /nm	Output wavelength /nm	Output power /mW	Slope efficiency / %	Year	
			715	25	30		
		476.5	635	250	64	1991 ^[60]	
	Ar^+		605	150	33		
			520	2	1.03		
			491	6	9		
	Optically pumped semiconductor laser	497.7	635	94	41.5	2005 ^[61]	
			716	49	30	2009 ^[62]	
	CaN	440	635	59	35		
Pr:ZBLAN	Gan	440	521	43	31		
			488	42	29		
	GaN	442,448	521	322	53	$2011^{[63]}$	
	GaN (quasi-continuous wave)	443	634.5	1070	20.7	$2020^{[64]}$	
	GaN	444	635.5	2300	14	$2021^{[65]}$	
	GaN	443	521	3600	20.9	2022 ^[66]	
	GaN	443	717	4100	22.2	2023[67]	
	GaN	443	491.5	97.5	23.7	2023[68]	
	GaN	443	635.2	4920	25.7	2023 ^[69]	
	GaN	442	638	645.7	41.9	2011[70]	
$Pr: AlF_3$	GaN	444	522.2	598	43	$2011^{[71]}$	
	GaN	442	638	2000	36.1	$2019^{[72]}$	
Dy:ZBLAN	Λr^+	457	575	~ 10	1.5	2000 ^[73]	
	Ar	457	478	2.3	0.9		
	GaN	450	574.6	1120	33.6	$2021^{[74]}$	
Dy: AlF ₃	GaN	398.8	575	10.3	17.1	2010[75]	
Tb:ZBLAN	Ar^+	488	542.8	1.6	8.4	2008[76]	
Ho:ZBLAN	SSL	532	752.1	1640	50.2	2022 ^[77]	

第51卷第1期/2024年1月/中国激光

对于深红光,1991年,法国国家通信研究中心的 Allain 等^[39]率先采用氩离子激光泵浦 Pr: ZBLAN 光 纤,获得了715 nm深红光激射,输出功率为20 mW,斜 效率为18.5%。同年,南安普敦大学的Smart等^[60]也 报道了氩离子激光泵浦的可见光 Pr: ZBLAN 光纤激 光器,并将715 nm深红光的斜效率提高至30%。由于 下转换需要的泵浦源难以获得突破,同时,受到上转换 可见光激光研究热度的影响,下转换可见光激光器的 研究进展缓慢。

随着 GaN 蓝光 LD 的出现,研究人员重新燃起了 对下转换可见光掺稀土光纤激光器的研究热情。2009 年,日本中央玻璃公司的 Okamoto 等^[62]利用 448 nm GaN LD 泵浦 Pr: ZBLAN 光纤,实现了 49 mW 的 716 nm 深红光,斜效率为 30%,并且在青绿光、橙红光、近红 外波段均实现了可调谐输出,具体的实验装置及可调 谐光谱图如图 4 所示。

图 4 深红光可调谐连续波光纤激光器^[62]。(a)实验装置;(b)可调谐光谱图 Fig. 4 Deep red tunable CW fiber lasers^[62]. (a) Experimental setup; (b) tunable spectra

2023年,本课题组利用443 nm GaN LD 泵浦 DC Pr:ZBLAN 光纤,结合光纤端面镀膜技术,实现了4.1 W

高功率深红光 717 nm 激射,如图 5 所示,斜效率为 22.2%^[67]。

相比深红光,635 nm 红光的相关研究更为丰富。 1991年,南安普敦大学的 Smart 等^[60]报道了氩离子激 光泵浦的可见光 Pr:ZBLAN 光纤激光器,635 nm 红光 的斜效率为 64%,输出功率为 250 mW。2005年,汉堡 大学的 Richter 等^[61]利用光泵 浦半导体激光器 (OPSL),对比了泵浦低掺及高掺 Pr:ZBLAN 光纤产 生 635 nm 红光的效果:低掺增益光纤的激射阈值 (146 mW)较高,斜效率(19.4%)较低,输出功率 (12 mW)较低;高掺增益光纤的激射阈值(50 mW)较低,斜效率(41.5%)较低,输出功率(~94 mW)相对较 高。2011年,日本住田光学的 Nakanishi等^[70]报道了一 种掺镨氟化铝玻璃光纤(Pr:AlF₃),利用 442 nm GaN LD泵浦 Pr:AlF₃光纤,获得了 638 nm 红光,最大功率 为 645.7 mW,斜效率为 41.9%。直到 2020年,法国卡 昂大学的 Kifle等^[64]首次报道了瓦级(1.07 W)单波长 634.5 nm 红光,该工作用准连续的 443 nm GaN LD 泵 浦 DC Pr:ZBLAN 光纤,斜效率为 21.6%,线宽为 0.6 nm, 如图 6 所示。

为进一步提高下转换红光功率,2021年加拿大 拉瓦尔大学的Lord等^[65]为提高腔镜的损伤阈值,将 高反率(>99%)布拉格光纤光栅(FBG)作为腔镜, 利用氟化物熔接技术将石英基质的FBG与泵浦源 尾纤和氟化物增益光纤相接,得到了完整的线性腔, 并用444 nm 多模 GaN LD 泵浦 Pr³⁺: ZrF₄氟化物光 纤,产生了635.5 nm 红光激射,如图7所示。该工作 最大连续波输出功率为2.3 W,线宽为0.16 nm,斜效 率为14%。

本课题组采用更大功率(20 W)的多模443 nm GaN LD 泵浦 DC Pr: ZBLAN 光纤,结合光纤端面镀 膜技术与4% 菲涅耳反射构建线性腔,实现了高功率

图 7 红光全光纤连续波光纤激光器^[65]。(a)实验装置;(b)斜效率;(c)光谱图 Fig. 7 All-fiber red CW fiber lasers^[65]. (a) Experimental setup; (b) slope efficiency; (c) spectrum

(~4.92 W)635.2 nm 红光,斜效率为 25.7%,并测试了 0.5 h内激光器在~5 W 高功率运转下的强度波动 (0.73%)^[69],如图 8所示。

受掺 Dy³⁺氟化物光纤技术的限制,黄光波段的研究开展较晚,相关研究工作相对较少。2000年,德国 耶拿大学的 Limpert 等^[73]采用氩离子激光泵浦 Dy: ZBLAN 光纤,首次实现了下转换光纤黄光激射,575 nm 输出功率仅为~10 mW,斜效率低至仅1.5%。2010年,日本大阪大学的Fujimoto等^[75]用398.8 nm GaN LD泵浦Pr:AlF₃光纤,实现了10.3 mW 575 nm 黄光激射,将斜效率提升至17.1%。2021年,本课题组采用450 nm GaN LD泵浦掺Dy:ZBLAN 光纤,并结合光纤端面镀膜技术构建了线性腔,实现了1.12 W 574.6 nm 黄光激射,斜效率为33.6%,如图9所示^[74]。

图 8 高功率红光连续波光纤激光器^[69]。(a)实验装置;(b)斜效率;(c)光谱;(d)光束质量;(e)功率稳定性 Fig. 8 High power red CW fiber lasers^[69]. (a) Experimental setup; (b) slope efficiency; (c) spectrum; (d) beam quality; (e) power stability

图 9 高功率黄光连续波光纤激光器^[74]。(a)实验装置;(b)实物图;(c)斜效率;(d)光谱图

Fig. 9 High power yellow CW fiber lasers^[74]. (a) Experimental setup; (b) physical picture; (c) slope efficiency; (d) spectra

第 51 卷 第 1 期/2024 年 1 月/中国激光

因半导体激光在绿光波段的"绿光空隙"问题,研究者对如何获得高功率绿光光纤激光给予了更多关注。1991年,南安普敦大学 Smart等^[60]采用氩离子激光泵浦 Pr: ZBLAN 光纤,率先实现了 520 nm 绿光激射,输出功率仅为~2 mW,斜效率为1.03%。2009年,日本中央玻璃公司的 Okamoto等^[62]利用 448 nm GaN LD 泵 浦 Pr: ZBLAN 光纤,实现了 43 mW 的521 nm 绿光,斜效率为31%,并且在青绿光、橙红光、近红外波段均实现了可调谐输出。为了进一步提高绿光功率,2011年,Okamoto等^[63]利用氟化物光纤熔接技术,将 Pr: ZBLAN 光纤与无源二氧化硅光纤熔

接,构建了全光纤谐振腔,并利用 422 nm 及 448 nm GaN LD 泵浦,将 521 nm 绿光功率提升至 322 mW, 斜效率也提高至 53%。同年,日本住田光学的 Nakanishi等^[71]利用氟铝基防水氟化物光纤(Pr: WPFGF)陆续开展了一系列研究,包括利用偏振合束 技术,将S偏振和P偏振 GaN LD 合束,通过泵浦 Pr: WPFGF光纤,将 522 nm 绿光功率提升至 598 mW,斜效率为 43%,如图 10 所示。2013年,Nakanishi等^[78]采用工作在脉冲模式的 444 nm GaN LD 泵浦 Pr: WPFGF光纤,首次将 522 nm 绿光功率提升至 1.53 W, 斜效率为 51.8%。

图 10 绿尤连续波尤纤激尤舔 (a)头短装直;(b)科效举;(c)尤指图 Fig. 10 Green CW fiber lasers^[71]. (a) Experimental setup; (b) slope efficiency; (c) spectrum

2022年,本课题组利用443 nm GaN LD 泵浦 2.1 m长的 DC Pr: ZBALN光纤,实现了3.6 W的 521 nm绿光,最大斜效率为20.9%,具体如图11所 示^[66]。此外,青光波段也已实现下转换激光激射^[79], 但相关研究较少,本课题组于2023年采用443 nm GaN LD 泵浦超短(4.3 cm)单包层 Pr: ZBLAN,实现 了491.5 nm青光激射,功率为97.5 mW,斜效率为 23.7%^[68]。

4 可见光脉冲光纤激光器

随着可见光连续波光纤激光器的不断发展,可见 光脉冲光纤激光器也引起了研究者的广泛关注。可见 光脉冲光纤激光器的实现方式可分为调Q运转^[80-98]和 锁模运转^[99-105]。下面将分别介绍可见光脉冲光纤激光器调Q运转和锁模运转的研究进展。

4.1 可见光调Q光纤激光器

调 Q 光纤激光器根据实现方式主要分为主动调 Q、被动调 Q 以及自脉冲调 Q 光纤激光器。2013年, Kojou 等^[80]在 Pr: ZBLAN 光纤激光器中首次实现了波 长可调谐的红、橙、绿、青光主动调 Q 光纤激光输出。 然而,主动调 Q 光纤激光器主要依赖腔内声光调制器 和电光调制器对激光的调制,调制器等电子器件的引 入不仅牺牲了光纤激光器全光纤结构的优势,还大大 提高了系统的复杂性和成本,难以满足实际应用的需 求。相对于主动调 Q 光纤激光器,被动调 Q 和自脉冲 调 Q 光纤激光器凭借其结构小巧紧凑和低成本的优

势,得到了大力的发展。以下我们基于这两种实现方 式对可见光波段调Q光纤激光器进行概述。

基于自脉冲调Q的光纤激光器主要以稀土掺杂 氟化物增益光纤本身作为可饱和吸收体[81-84]。2016 年,本课题组利用通过976 nm激光泵浦 Er: ZBLAN 光纤,实现了上转换的543 nm 绿光激光输出,并进一 步得到了自调Q脉冲[82]。随着泵浦功率的增加,脉冲 重复频率由25.9 kHz增加至50.8 kHz,对应的脉宽由 7.20 µs 缩减至1.95 µs。该工作首次在可见光波段直 接实现了自脉冲调Q,为我们在可见光波段获得结构 紧凑且性能良好的短脉冲输出提供了新的思路。在 此之后,基于不同增益光纤的不同输出波长的自脉冲 调Q光纤激光器也逐步得到报道,全光纤的结构通常 包含了光纤输入镜、稀土掺杂氟化物增益光纤和输出 镜。2018年, Wu 等^[81]利用444 nm 激光泵 浦 Pr: ZBLAN 光纤,展示了红光波段的自脉冲调Q锁模脉 冲输出,激光器的最高输出功率为22.5 mW,中心波 长和3dB光谱宽度分别为635.9nm和2.4nm。同 年,Li等^[83]基于Ho:ZBLAN光纤报道了绿光和深红 光的自脉冲调Q光纤激光器,绿光自脉冲调Q光纤 激光器的最大单脉冲能量为196 nJ,对应97.66 kHz 的脉冲重复频率和 605 ns 的脉冲宽度,750 nm 深红 光自脉冲调Q光纤激光器的脉冲重复频率和脉冲宽 度范围分别为 59.88~100.5 kHz 和 4.85~2.02 µs, 对 应 58 nJ 的最大脉冲能量。2019年, Li 等^[84]进一步在 Ho: ZBLAN 光纤中将绿光自脉冲调 Q的脉冲能量 提升至264 nJ。

被动调 Q 光纤激光器在可见光波段的实现通常 是以腔内的纳米材料作为调 Q 器件。目前,一系列纳 米材料可饱和吸收体已经被广泛用于实现可见光波 段的被动调 Q 光纤激光器。表 3 对这些基于纳米材 料的稀土掺杂光纤可见光被动调 Q 光纤激光器进行 了总结。接下来我们将根据输出波长对相关成果进 行概述。

关于深红光被动调 Q 光纤激光器,2017年,Li 等^[85]基于单壁碳纳米管,以 Pr:ZBLAN 光纤作为增益 介质,实现了中心波长为716 nm 的深红光调 Q 激光输 出,最大脉冲能量为 18.3 nJ,脉冲重复频率和脉冲宽 度分别为 32.6~86.5 kHz 和 2.3~7.8 µs。这也是深红 光波段调 Q 光纤激光器的唯一报道。

关于红光被动调 Q 光纤激光器, 2016年, Zhong 等^[86]利用氧化石墨烯作为调 Q 器件, 首次在 Pr: ZBLAN 光纤中实现了红光调 Q脉冲输出。同样基于 石墨烯调 Q 器件, Kajikaawa 等^[87]借助双包层掺 Pr³⁺ 氟化物增益光纤的优势,实现了中心波长为 636 nm 且脉冲能量高达 280 nJ 的红光调 Q 脉冲输出。除了 石墨烯可饱和吸收体外, 拓扑绝缘体(TIs)也可以用 于可见光波段的调 Q 光纤激光器。基于 Bi₂Se₃和 Bi₂Te₃的拓扑绝缘体, Wu 等^[88]在 Pr: ZBLAN 光纤中 实现了 635 nm 波段的调 Q 激光输出。不局限于拓扑 绝缘体, Zhong 等^[86]在 2017年利用单层黑磷作为调 Q 器件, 同样实现了红光 Pr: ZBLAN 光纤调 Q 激光器。 相比于上述低维可饱和吸收体, 过渡金属硫化物 (TMDs)由于共振吸收峰正好落于可见光波段, 因此

Nanomaterial	Gain fiber	Output wavelength /nm	Pulse energy /nJ	Frequency / kHz	Pulse width /μs	Year
	Pr:ZBLAN	604	$6.4 (WS_2)$ $5.5 (MoS_2)$	67.3–132.2 50.8–118.4	0.43–1.10 0.60–1.95	2016 ^[97]
Transition metal dichalcogenides (TMDs)	Pr:ZBLAN	635	28.7 (WS ₂) 16.2 (MoS ₂) 11.1 (MoSe ₂)	232.7-512.8 240.4-438.6 357.1-555.1	0.2 0.22 0.24	2016 ^[90]
	Pr:ZBLAN	635	0.43	90.9-203.2	0.80 - 1.47	$2017^{[91]}$
Torological insulators (TIs)	Pr:ZBLAN	635	14.3	164.5-454.5	0.24-0.86	2015[88]
1 opological insulators (11s)	Pr:ZBLAN	604	3.1	86.2-187.4	0.49 - 0.73	2017 ^[98]
Black phosphorus (BP)	Pr:ZBLAN	635	27.6	108.8-409.8	0.38 - 1.56	2017 ^[89]
	Pr:ZBLAN	603		383	0.47	$2014^{[96]}$
Graphene	Pr:ZBLAN	635	24.2	64.1-195.3	0.55 - 1.04	2016 ^[86]
	$\Pr: AlF_3$	636	280	633	0.18	2018 ^[87]
Single-walled carbon nanotubes	Pr:ZBLAN	716	18.3	32.6-86.5	2.3-7.8	2017 ^[85]
(SWNTs)	Pr:ZBLAN	635	2.95	57.5-98.2	0.81 - 1.92	2018[92]
Au nanoparticles	Pr:ZBLAN	635	27.7	285.7-546.4	0.23-0.55	2015 ^[93]
Cu nanowires	Pr:ZBLAN	635	30.7	239.8-312.4	0.39-0.68	2016[94]
A	Er:ZBLAN	543	25.2	42.6-181.2	0.49-1.99	2019[95]
Au nanowires	Pr:ZBLAN	635	1.87	299.3-407.3	0.62-1.01	2019 ^[95]

表 3 可见光被动调 Q 光纤激光器的代表性研究成果 Table 3 Representative research achievements of visible passively Q-switched fiber lasers

也是可见光波段极具潜力的调 Q 器件。利用过渡金 属硫化物作为调Q器件,本课题组成功获得了红光 Pr: ZBLAN 光纤调 Q 激光器^[90]。2015年, Wu 等^[88] 研究了透射率对基于WS。吸收体的红光调Q光纤激 光器的影响。除了这些低维可饱和吸收体外,单壁 碳纳米管(SWNTs)也被证实在可见光波段具备可 饱和吸收特性。碳纳米管的吸收峰可以通过调节其 管径来改变,因此也是可见光波段具有潜力的调Q 器件。2018年,Li等^[92]成功利用单壁碳纳米管实现 了中心波长为 635 nm 的调 Q 光纤激光器。贵金属 纳米材料作为一种特殊的可饱和吸收体,凭借其局 部表面等离子体共振效应,在可见光波段具有非线 性可饱和吸收效应,调节材料的纵横比,可以使其吸 收峰落于可见光波段。Wu等^[93-94]利用金纳米粒 (Au NPs)和铜纳米线(Cu NWs)分别在红光波段实 现了调Q脉冲输出。2019年,本课题组以金纳米棒 (GNRs)作为调Q器件,实现了 635 nm 的红光调Q涡旋激光输出^[95]。

关于橙光调 Q 光纤激光器,2014年,Fujimoto等^[96] 利用石墨烯作为调 Q 器件,首次在 Pr:ZBLAN 增益光 纤中实现了橙光波段的调 Q 脉冲运转,橙光调 Q 脉冲 的重复频频和脉宽分别为 383 kHz 和 470 ns,如图 12 所示。随后,分别基于 WS₂和 MoS₂过渡金属硫化物可 饱和吸收体,Li等^[97]实现了橙光调 Q 脉冲输出。同样 是在 Pr:ZBLAN 光纤激光器中, Lin 等^[98]将 Bi₂Se₃的拓 扑绝缘体插入激光器, 实现了中心波长为 604 nm 的橙 光调 Q 光纤激光器。

关于绿光调 Q 光纤激光器,本课题组在实现绿光 连续光涡旋激光的基础上,利用带隙调控可见光共振 金纳米棒,实现了 543 nm 的调 Q 涡旋光纤激光器^[94], 装置图和典型实验结果如图 13 所示。值得一提的是, 本课题组于 2023 年在光纤激光器中直接输出了绿光 波段的毫焦量级的调 Q 脉冲^[99]。利用 450 nm 激光泵 浦 Ho: ZBLAN 光纤,基于腔倒空技术获得了脉冲能量 为 3.17 mJ 的调 Q 脉冲,对应的中心波长和重复频率分 别为 543 nm 和 100 Hz。该工作也为有效解决半导体 材料因绿光波段"绿光空隙"而难以获得大能量绿光脉 冲的问题提供了新的解决思路。

4.2 可见光锁模光纤激光器

可见光锁模光纤激光器相比于可见光调Q光纤激 光器,具有峰值功率高和响应时间短等优点,大大扩展 了可见光光纤激光器的应用范围。得益于高性能稀土 掺杂氟化物增益光纤技术的日益成熟,可见光锁模光 纤激光器迎来了难得的发展机遇。然而时至今日,可 见光波段锁模光纤激光器的发展进程却极为缓慢。尽 管 Costantini等^[100]在2000年利用主动锁模技术实现了 635 nm 波段的锁模光纤激光器,但该方案面临着许多 不足。该红光锁模光纤激光器输出的锁模脉冲宽度为

图 13 绿光调 Q 涡旋光纤激光器^[94]。(a)实验装置图;(b)输出光谱;(c)脉冲系列;(d)高阶模强度分布 Fig. 13 Green Q-switched vortex fiber lasers^[94]. (a) Experimental setup; (b) output spectrum; (c) pulse trains; (d) intensity distributions of high order modes

第51卷第1期/2024年1月/中国激光

550 ps,脉宽较宽。更重要的是,由于采用了主动锁模 技术,谐振腔内加入了声光相位调制器作为锁模器件, 不仅牺牲了光纤系统的小巧灵活性,还大大增加了系 统的成本和损耗。因此,相较于可见光主动锁模光纤 激光器,可见光被动锁模光纤激光器具有明显的优势。 在实现可见光波段被动锁模光纤激光器方面,研究人 员面临以下几个挑战:1)可见光被动锁模光纤激光器 所依赖的稀土掺杂氟化物增益光纤难以与传统的石英 光纤进行低损耗的熔接,不利于锁模光纤谐振腔的构 建,阻碍了一些实验方案的实施。对接方式容易在腔 内引入较大的损耗,不利于锁模运转的建立,而基于自 由空间的腔结构又牺牲了全光纤的优势。2)用于实 现可见光被动锁模光纤激光器的非线性锁模技术(非 线性偏振旋转、非线性放大环镜和非线性光环形镜)往 往需要在谐振腔中使用波分复用器、隔离器、光纤光栅 和光耦合器等光纤器件。遗憾的是,目前可见光波段 的光纤器件发展仍不成熟且价格较高。3)高性能稀 土掺杂氟化物增益光纤本身的制作尚不成熟,难以获 得且价格高昂。4)由于稳定锁模运转的建立依赖谐振 腔内色散和非线性效应的平衡,而可见光在氟化物光 纤和传统石英中都具有超高的正色散值,过多正色散 的积累不利于锁模运转的建立。直到最近几年,关于 稀土掺杂氟化物光纤可见光被动锁模光纤激光器的研 究才拉开序幕。基于非线性偏振旋转(NPR)、非线性 放大环镜(NALM)和非线性光环形镜(NOLM)等非线 性锁模技术,红光、黄光和绿光被动锁模光纤激光器已 经得到了报道。接下来,我们对报道的可见光被动锁 模光纤激光器进行介绍,具体参数性能如表4所示。

表4 可见光被动锁模光纤激光器的代表性研究成果

Table 4	Representative	research a	achievements	of visible	passively	v mode-locked	l fiber	lasers
					p			

Mode locked type	Gain fiber	Output wavelength /nm	Output power / mW	Frequency /MHz	Pulse width /ps	Year
NALM	Pr/Yb:ZBLAN	635	635 1.35 3.87		96	2019[101]
NOLM Pr/Yb:ZBLAN		634	1.3	5.12	85	2020[102]
NPR	Pr/Yb:ZBLAN	635	440	110.56	9	2021[103]
	Dy:ZBLAN	575	240	100.87	83	2022 ^[104]
	Ho:ZBLAN	545	288	294.86	19.7	2022[105]
	Pr:ZBLAN	635	90	137	0.168 (compressed)	2023[28]

2020年,本课题组实现了可见光被动锁模光纤激 光器^[101]。课题组通过数值求解金兹堡-朗道方程,发 现耗散孤子谐振(DSR)机制有利于可见光波段超大 色散光纤腔被动锁模脉冲的稳定建立。采用Pr/Yb共 掺ZBLAN光纤作为可见光增益介质,利用非线性放 大环镜作为锁模器,首次实验实现了全光纤635 nm 红 光上转换被动锁模激光器。实验装置及典型结果如 图 14所示,635 nm 的DSR锁模脉冲得到稳定建立,脉 宽短至96 ps,光谱带宽<0.1 nm。该项工作是可见光 超快激光领域的重要突破,为实现光锁模光纤激光器 提供了新的思路。

直至2020年,非线性光环形镜技术也被成功用于 可见光波段的被动锁模光纤激光器。本课题组基于光 纤模式耦合器实现了可见光全光纤涡旋被动锁模激光 器^[102]。采用9字腔结构与635 nm模式选择耦合器相 结合的方式,激光器可输出±1阶轨道角动量涡旋光 束,稳定输出了脉宽为85~510 ps的耗散孤子谐振脉 冲。2022年,本课题组利用少模Pr/Yb:ZBLAN作为 增益介质,基于非线性偏振旋转可饱和吸收效应和空 间滤波效应对模间色散的平衡作用,首次实现了可见 光波段的时空锁模光纤激光器^[103],锁模激光器同时锁 定腔内的纵模和横模并输出了635 nm的耗散孤子 (DS),最小脉宽宽度为9 ps(图15)。该工作填补了可 见光波段时空锁模光纤激光器的空白。通过搭建超快激光光纤放大器,最终输出的最高功率和脉冲能量分别为440 mW和4 nJ。

2022年,Luo等^[104-105]基于非线性偏振旋转技术, 利用Dy:ZBLAN和Ho:ZBLAN增益光纤分别实现了 575 nm 黄光和545 nm绿光的被动锁模光纤激光器,实 现了可见光被动锁模光纤激光器波长的拓展。激光器 实现了脉冲宽度皮秒量级的耗散孤子谐振,其中黄光 被动锁模光纤激光器输出的最高平均功率为240 mW, 对应的最高单脉冲能量为2.4 nJ,激光器获得的最窄 脉冲宽度为83 ps,如图16所示。通过使用较短的增 益光纤,绿光被动锁模光纤激光器实现了最窄脉冲宽 度为19.7 ps的绿光锁模脉冲,输出的最高平均功率和 脉冲能量分别为288 mW和0.98 nJ。绿光超快激光器 的中心波长为545 nm,有力填补了半导体材料的"绿 光空隙"。

可见光飞秒脉冲在材料加工和生物医学等领域有着极大的应用价值,为了获得可见光波段的锁模飞秒脉冲,加拿大拉瓦尔大学制备了红光波段的外腔压缩飞秒光纤激光器。利用非线性偏振旋转技术,在Pr: ZBLAN光纤激光振荡器中直接输出了1.6 ps脉冲宽度的锁模脉冲(重复频率为137 MHz),随后通过腔外光栅对的压缩,最终实现了压缩脉宽为168 fs的超快

图 14 可见光全光纤被动锁模激光器^[101]。(a)实验装置图;(b)锁模光谱;(c)脉冲序列;(d)单脉冲;(e)射频频谱 Fig. 14 Visible all-fiber passively mode-locked lasers^[101]. (a) Experimental setup; (b) mode-locked spectrum; (c) pulse train; (d) single pulse; (e) radio-frequency spectrum

图 15 可见光时空锁模激光器^[103]。(a)实验装置图;(b)锁模脉冲序列;(c)锁模光谱;(d)放大功率和脉冲能量;(e)射频频谱 Fig. 15 Visible spatiotemporal mode-locked lasers^[103]. (a) Experimental setup; (b) mode-locked pulse trains; (c) mode-locked spectra; (d) amplified power and pulse energy; (e) radio-frequency spectrum

激光输出(图 17),对应 0.73 kW 的峰值功率^[28]。近期, 本课题组发展了可见光腔内的色散管理及相位偏置-非线性放大环镜锁模技术,在红光波段制备了可见光 被动锁模光纤振荡器,直接产生了196 fs飞秒脉冲,进 一步通过可见光啁啾脉冲放大技术实现了瓦级的红光 飞秒脉冲输出。

图 16 黄光被动锁模光纤激光器^[104]。(a)窄范围脉冲序列;(b)宽范围脉冲序列;(c)单脉冲包络随泵浦功率的演变;(d)自相关迹; (e)实验装置图

Fig. 16 Yellow passively mode-locked fiber lasers^[104]. (a) Pulse train with narrow span; (b) pulse train with large span; (c) evolution of single pulse envelope with pump power; (d) autocorrelation trace; (e) experimental setup

图 17 外腔压缩可见光飞秒光纤激光器^[28]。(a)实验装置图;(b)锁模光谱;(c)锁模自相关迹

Fig. 17 External cavity compressed visible femtosecond fiber lasers^[28]. (a) Experimental setup; (b) mode-locked spectrum; (c) mode-locked autocorrelation trace

5 结束语与展望

从光纤激光器的角度综述了当前用掺稀土光纤直 接产生可见光激光的研究进展。在稀土离子中,Pr³⁺输 出的可见光发展最快,在蓝光LD泵浦下能实现高效率 青光、绿光、橙光、红光以及深红光激光输出,且能在峰值 波长周围较宽的范围内调谐激光输出波长。配合Ho³⁺、 Dy³⁺、Tb³⁺、Tm³⁺和 Pr³⁺/Yb³⁺等稀土光纤,可以实现 激光波长覆盖可见光全波段。并在连续波、调Q及锁 模三个重要的激光器运转模式中取得了显著的发展。

然而,可见光光纤激光器仍有一些亟待解决的问题,包括高功率、大脉冲能量、飞秒脉宽等。对于可见 光连续波光纤激光器而言,目前能获得最高功率 (~5W)的为红光(635 nm),进一步提升输出功率、光 束质量和斜效率并拓展至可见光全波段是推动其发展 的关键,因此研究发展新型高功率可见光稀土光纤、高

性能可见光光纤器件、可见光功率合束技术等将具有 重要意义。对于可见光脉冲光纤激光器而言,目前能 获得最大脉冲能量(~280 nJ)的为红光(635 nm),最 窄脉宽为168 fs。继续提高可见光飞秒脉冲能量、平 均功率和稳定性并实现全光纤化可见光飞秒光纤激光 器是推动其发展和应用的关键。需要探索挖掘适用于 可见光波段的具有高增益带宽和高损伤阈值的有源光 纤、大调制深度可饱和吸收体材料、新型锁模技术以及 可见光高功率放大技术,为可见光超快光纤激光器的 发展添砖加瓦。我们相信,通过技术的不断创新,可见 光连续/超快光纤激光器因具有小型化、高性能、免维 护和低成本等优势,未来必将在生物医学、光通信、材 料加工、显微成像等领域中得到广泛应用。

参考文献

- Chellappan K V, Erden E, Urey H. Laser-based displays: a review [J]. Applied Optics, 2010, 49(25): F79-F98.
- [2] Shi W, Fang Q, Zhu X S, et al. Fiber lasers and their applications[J]. Applied Optics, 2014, 53(28): 6554-6568.
- [3] Han Y, Guo Y B, Gao B, et al. Generation, optimization, and application of ultrashort femtosecond pulse in mode-locked fiber lasers[J]. Progress in Quantum Electronics, 2020, 71: 100264.
- Hirano Y. Highly efficient, compact green laser for laser TV[EB/ OL]. [2023-03-05]. https://cir. nii. ac. jp/crid/ 1570009751417352576#citations_container.
- [5] Hamza M, El-Ahl M H S, Hamza A M, et al. Application of blue laser diodes and LEDs in phototherapy for neonatal jaundice[J]. Proceedings of SPIE, 2003, 5142: 187-191.
- [6] Peng F, Liu W P, Luo J Q, et al. Study of growth, defects and thermal and spectroscopic properties of Dy: GdScO₃ and Dy, Tb:GdScO₃ as promising 578 nm laser crystals[J]. CrystEngComm, 2018, 20(40): 6291-6299.
- [7] Hollins R, Rudge A, Bennett S. Technologies for blue-green underwater optical communications[J]. Proceedings of SPIE, 2013, 8899: 88990F.
- [8] Susaki W, Takamiya S. Visible semiconductor laser[J]. Japanese Journal of Applied Physics, 1981, 20(S1): 205.
- [9] Bridges W B. Laser oscillation in singly ionized argon in the visible spectrum[J]. Applied Physics Letters, 1964, 4(7): 128-130.
- [10] Soffer B H, McFarland B B. Continuously tunable, narrow-band organic dye lasers[J]. Applied Physics Letters, 1967, 10(10): 266-267.
- [11] Rines G A, Zenzie H H, Moulton P F. Recent advances in Ti:Al₂O₃ unstable-resonator lasers[C]//Advanced Solid State Lasers 1991, Hilton Head, South Carolina. Washington, DC: OSA, 1991: TL3.
- [12] Fujimoto Y, Nakanishi J, Yamada T, et al. Visible fiber lasers excited by GaN laser diodes[J]. Progress in Quantum Electronics, 2013, 37(4): 185-214.
- [13] 郑怡, 邱昊学, 李岩, 等. 基于二氧化钒的可见光超材料饱和吸收体[J]. 光学学报, 2022, 42(15): 1516001.
 Zheng Y, Qiu H X, Li Y, et al. Visible light metamaterial saturable absorber based on vanadium dioxide[J]. Acta Optica Sinica, 2022, 42(15): 1516001.
 [14] 关晨, 丛振华, 刘兆军, 等. LD泵浦翠绿宝石晶体实现 760 nm、
- [11] 欠款, (1.25, W. 激光输出[J]. 中国激光, 2020, 47(10): 1015001.
 Guan C, Cong Z H, Liu Z J, et al. 10.5 W laser output at 760 nm from LD pumped alexandrite crystal[J]. Chinese Journal of Lasers, 2020, 47(10): 1015001.
- [15] 王凤娟,刘哲,徐斌,等.蓝光激光二极管抽运Pr³⁺:YLF红绿可见光激光器[J].中国激光,2013,40(12):1202002.

第51卷第1期/2024年1月/中国激光

Wang F J, Liu Z, Xu B, et al. Blue laser diode pumped Pr³⁺:YLF visible lasers[J]. Chinese Journal of Lasers, 2013, 40(12): 1202002.

- [16] Nakamura S, Mukai T, Senoh M. Candela-class high-brightness InGaN/AlGaN double-heterostructure blue-light-emitting diodes [J]. Applied Physics Letters, 1994, 64(13): 1687-1689.
- [17] Kränkel C, Marzahl D T, Moglia F, et al. Out of the blue: semiconductor laser pumped visible rare-earth doped lasers[J]. Laser & Photonics Reviews, 2016, 10(4): 548-568.
- [18] Marantz H, Rudko R, Tang C. The singly ionized krypton ion laser[J]. IEEE Journal of Quantum Electronics, 1969, 5(1): 38-44.
- [19] White A D, Gordon E I, Rigden J D. Output power of the 6328-Å gas maser[J]. Applied Physics Letters, 1963, 2(5): 91-93.
- [20] Basting D, Pippert K D, Stamm U. History and future prospects of excimer lasers[J]. Proceedings of SPIE, 2002, 4426: 25-34.
- [21] Taylor L R, Feng Y, Calia D B. 50 W CW visible laser source at 589 nm obtained via frequency doubling of three coherently combined narrow-band Raman fibre amplifiers[J]. Optics Express, 2010, 18(8): 8540-8455.
- [22] Fan Y X, Eckardt R, Byer R, et al. Visible BaB₂O₄ optical parametric oscillator pumped at 355 nm by a single-axial-mode pulsed source[J]. Applied Physics Letters, 1988, 53: 2014-2016.
- [23] Harth A, Schultze M, Lang T, et al. Two-color pumped OPCPA system emitting spectra spanning 1.5 octaves from VIS to NIR[J]. Optics Express, 2012, 20(3): 3076-3081.
- [24] Brierley M C, Massicott J F, Whitley T J, et al. Visible fiber laser [J]. BT Technology Journal, 1993, 11(2): 128-36.
- [25] Scheps R. Upconversion laser processes[J]. Progress in Quantum Electronics, 1996, 20(4): 271-358.
- [26] Takahashi K, Nashimoto N, Koganei A, et al. Development of a primary yellow (575 nm) laser by Dy³⁺-doped double-cladstructured waterproof fluoro-aluminate glass fiber[J]. Optics Communications, 2023, 545: 129650.
- [27] Weichmann U, Baier J, Heusler G, et al. High-power upconversion fibre lasers for the visible wavelength range[C]//2007 European Conference on Lasers and Electro-Optics and the International Quantum Electronics Conference, June 17-22, 2007, Munich, Germany. New York: IEEE Press, 2007.
- [28] Lord M P, Olivier M, Bernier M, et al. Visible femtosecond fiber laser[J]. Optics Letters, 2023, 48(14): 3709-3712.
- [29] Adam J L, Sibley W A, Gabbe D R. Optical absorption and emission of LiYF₄: Pr³⁺[J]. Journal of Luminescence, 1985, 33(4): 391-407.
- [30] Dieke G H, Crosswhite H M. The spectra of the doubly and triply ionized rare earths[J]. Applied Optics, 1963, 2(7): 675-686.
- [31] Amin M Z, Jackson S D, Majewski M R. Experimental and theoretical analysis of Dy³⁺-doped fiber lasers for efficient yellow emission[J]. Applied Optics, 2021, 60(16): 4613-4621.
- [32] Metz P W, Marzahl D T, Majid A, et al. Efficient continuous wave laser operation of Tb³⁺-doped fluoride crystals in the green and yellow spectral regions[J]. Laser & Photonics Reviews, 2016, 10(2): 335-344.
- [33] Digonnet M J F. Rare-earth-doped fiber lasers and amplifiers[M]. 2nd ed. New York: Marcel Dekker, 2001.
- [34] Qin G, Huang S, Feng Y, et al. Power scaling of Tm³⁺ doped ZBLAN blue upconversion fiber lasers: modeling and experiments [J]. Applied Physics B, 2006, 82(1): 65-70.
- [35] Zeller M, Limberger H G, Lasser T. Tunable Pr³⁺-Yb³⁺-doped all-fiber upconversion laser[J]. IEEE Photonics Technology Letters, 2003, 15(2): 194-196.
- [36] Farries M C, Morkel P R, Townsend J E. Samarium³⁺-doped glass laser operating at 651 nm[J]. Electronics Letters, 1988, 24 (11): 709-711.
- [37] Allain J Y, Monerie M, Poignant H. Red upconversion Ybsensitised Pr fluoride fibre laser pumped in 0.8 μm region[J]. Electronics Letters, 1991, 27(13): 1156-1157.
- [38] Piehler D, Craven D, Kwong N, et al. Laser-diode-pumped red and green upconversion fibre lasers[J]. Electronics Letters, 1993,

第51卷第1期/2024年1月/中国激光

特邀综述

29(21): 1857-1858.

- [39] Allain J Y, Monerie M, Poignant H. Tunable CW lasing around 610, 635, 695, 715, 885 and 910 nm in praseodymium-doped fluorozirconate fibre[J]. Electronics Letters, 1991, 27(2): 189-191.
- [40] Ji S H, Wang Z Y, Huang S H, et al. 532 nm pumped visible emission from Ho³⁺-doped fiber lasers[J]. Optics & Laser Technology, 2023, 158: 108900.
- [41] Huenkemeier J, Wolf J, Stark A, et al. Visible up-conversion fiber laser with multiple switchable wavelengths[J]. Proceedings of SPIE, 2005, 5709: 110-116.
- [42] Xie P, Gosnell T R. Room-temperature upconversion fiber laser tunable in the red, orange, green, and blue spectral regions[J]. Optics Letters, 1995, 20(9): 1014-1016.
- [43] Sandrock T, Scheife H, Heumann E, et al. High-power continuous-wave upconversion fiber laser at room temperature[J]. Optics Letters, 1997, 22(11): 808-810.
- [44] Zellmer H, Riedel P, Tünnermann A. Visible upconversion lasers in praseodymium-ytterbium-doped fibers[J]. Applied Physics B, 1999, 69(5): 417-421.
- [45] Zellmer H, Riedel P, Kempe M, et al. High-power diode pumped upconversion fibre laser in red and green spectral range[J]. Electronics Letters, 2002, 38(21): 1250-1251.
- [46] Smart R G, Hanna D C, Tropper A C, et al. CW room temperature upconversion lasing at blue, green and red wavelengths in infrared-pumped Pr³⁺-doped fluoride fibre[J]. Electronics Letters, 1991, 27(14): 1307-1309.
- [47] Baney D M, Rankin G, Chang K W. Blue Pr³⁺-doped ZBLAN fiber upconversion laser[J]. Optics Letters, 1996, 21(17): 1372-1374.
- [48] Allain J Y, Monerie M, Poignant H. Room temperature CW tunable green upconversion holmium fibre laser[J]. Electronics Letters, 1990, 26(4): 261-263.
- [49] Funk D S, Stevens S B, Wu S S, et al. Tuning, temporal, and spectral characteristics of the green ($\lambda \sim 549$ nm), holmium-doped fluorozirconate glass fiber laser[J]. IEEE Journal of Quantum Electronics, 1996, 32(4): 638-645.
- [50] Ji S H, Liu S Q, Lin X J, et al. Watt-level visible continuouswave upconversion fiber lasers toward the "green gap" wavelengths of 535-553 nm[J]. ACS Photonics, 2021, 8(8): 2311-2319.
- [51] Whitley T J, Millar C A, Wyatt R, et al. Upconversion pumped green lasing in erbium doped fluorozirconate fibre[J]. Electronics Letters, 1991, 27(20): 1785-1786.
- [52] Allain J Y, Monerie M, Poignant H. Tunable green upconversion erbium fibre laser[J]. Electronics Letters, 1992, 28(2): 111-113.
- [53] Ferber S, Gaebler V, Eichler H J. Violet and blue upconversionemission from erbium-doped ZBLAN-fibers with red diode laser pumping[J]. Optical Materials, 2002, 20(3): 211-215.
- [54] Allain J Y, Monerie M, Poignant H. Blue upconversion fluorozirconate fibre laser[J]. Electronics Letters, 1990, 26(3): 166-168.
- [55] Sanders S, Waarts R G, Mehuys D G, et al. Laser diode pumped 106 mW blue upconversion fiber laser[J]. Applied Physics Letters, 1995, 67(13): 1815-1817.
- [56] Paschotta R, Moore N, Clarkson W A, et al. 230 mW of blue light from a thulium-doped upconversion fiber laser[J]. IEEE Journal of Selected Topics in Quantum Electronics, 1997, 3(4): 1100-1102.
- [57] Qin G S, Huang S H, Feng Y, et al. Multiple-wavelength upconversion laser in Tm³⁺-doped ZBLAN glass fiber[J]. IEEE Photonics Technology Letters, 2005, 17(9): 1818-1820.
- [58] Funk D S, Carlson J W, Eden J G. Room-temperature fluorozirconate glass fiber laser in the violet (412 nm)[J]. Optics Letters, 1995, 20(13): 1474-1476.
- [59] Zhao Y X, Fleming S. High efficiency blue Pr³⁺-doped fibre laser with high numerical aperture fibre[C]//Advanced Solid State Lasers 1995, Memphis, Tennessee. Washington, DC: OSA,

1995: VL12.

- [60] Smart R G, Carter J N, Tropper A C, et al. CW room temperature operation of praseodymium-doped fluorozirconate glass fibre lasers in the blue-green, green and red spectral regions [J]. Optics Communications, 1991, 86(3/4): 333-340.
- [61] Richter A, Scheife H, Heumann E, et al. Semiconductor laser pumping of continuous-wave Pr³⁺doped ZBLAN fibre laser[J]. Electronics Letters, 2005, 41(14): 794-795.
- [62] Okamoto H, Kasuga K, Hara I, et al. Visible-NIR tunable Pr³⁺doped fiber laser pumped by a GaN laser diode[J]. Optics Express, 2009, 17(22): 20227-20232.
- [63] Okamoto H, Kasuga K, Kubota Y. Efficient 521 nm all-fiber laser: splicing Pr³⁺-doped ZBLAN fiber to end-coated silica fiber[J]. Optics Letters, 2011, 36(8): 1470-1472.
- [64] Kifle E, Starecki F, Loiko P, et al. Watt-level visible laser in double-clad Pr³⁺-doped fluoride fiber pumped by a GaN diode[J]. Optics Letters, 2020, 46(1): 74-77.
- [65] Lord M P, Fortin V, Maes F, et al. 2.3 W monolithic fiber laser operating in the visible[J]. Optics Letters, 2021, 46(10): 2392-2395.
- [66] Zou J H, Hong J F, Zhao Z, et al. 3.6 W compact all-fiber Pr³⁺doped green laser at 521 nm[J]. Advanced Photonics, 2022, 4(5): 056001.
- [67] Zou J H, Feng C N, Lan L, et al. 4.1 W all-fiber Pr³⁺-doped deepred laser at 717 nm[J]. Journal of Lightwave Technology: 1-7[2023-09-06]. https://ieeexplore.ieee.org/document/10227519.
- [68] Hong J F, Zou J H, Wang Y, et al. All-fiber cyan laser at 491.5 nm[J]. Optics Letters, 2023, 48(5): 1327-1330.
- [69] Zhang C, Hong J F, Zhou L J, et al. Direct generation of 5 W allfiber red laser at 635 nm[J]. Optics & Laser Technology, 2023, 160: 109050.
- [70] Nakanishi J, Yamada T, Fujitomo Y, et al. Sub-watt output power at 638 nm in wavelength by direct oscillation with Pr-doped waterproof fluoro-aluminate glass fiber laser[C]//2011 Conference on Lasers and Electro-Optics Europe and 12th European Quantum Electronics Conference (CLEO EUROPE/EQEC), May 22-26, 2011, Munich, Germany. New York: IEEE Press, 2011.
- [71] Nakanishi J, Horiuchi Y, Yamada T, et al. High-power direct green laser oscillation of 598 mW in Pr³⁺-doped waterproof fluoroaluminate glass fiber excited by two-polarization-combined GaN laser diodes[J]. Optics Letters, 2011, 36(10): 1836-1838.
- [72] Fujimoto Y, Nakahara M, Binun P, et al. 2 W single-mode visible laser oscillation in Pr-doped double-clad structured waterproof fluoro-aluminate glass fiber[C]//2019 Conference on Lasers and Electro-Optics Europe & European Quantum Electronics Conference (CLEO/Europe-EQEC), June 23-27, 2019, Munich, Germany. New York: IEEE Press, 2019.
- [73] Limpert J, Zellmer H, Riedel P, et al. Laser oscillation in yellow and blue spectral range in Dy³⁺: ZBLAN[J]. Electronics Letters, 2000, 36(16): 1386-1387.
- [74] Zou J H, Li T R, Dou Y B, et al. Direct generation of watt-level yellow Dy³⁺-doped fiber laser[J]. Photonics Research, 2021, 9(4): 446-451.
- [75] Fujimoto Y, Ishii O, Yamazaki M. Yellow laser oscillation in Dy³⁺-doped waterproof fluoro-aluminate glass fibre pumped by 398.8 nm GaN laser diodes[J]. Electronics Letters, 2010, 46(8): 586-587.
- [76] Yamashita T, Qin G S, Suzuki T, et al. A new green fiber laser using terbium-doped fluoride fiber[C]//OFC/NFOEC 2008-2008 Conference on Optical Fiber Communication/National Fiber Optic Engineers Conference, February 24-28, 2008, San Diego, CA, USA. New York: IEEE Press, 2008.
- [77] Ji S H, Song Y Y, Wang Z Y, et al. High power downconversion deep-red emission from Ho³⁺-doped fiber lasers[J]. Nanophotonics, 2022, 11(8): 1603-1609.
- [78] Nakanishi J, Yamada T, Murakami M, et al. Watt-order direct green laser oscillation at 522nm in Pr³⁺-doped waterproof fluoroaluminate-glass fiber[C] //CLEO: 2013, June 9-14, 2013, San

Jose, California. Washington, DC: OSA, 2013: JTu4A.02.

- [79] Fujitomo Y, Murakami M, Nakanishi J, et al. Visible lasers in waterproof fluoro-aluminate glass fibers excited by GaN laser diodes[C]//Advanced Solid-State Lasers Congress 2013, October 27-November 1, 2013, Paris, France. Washington, DC: OSA, 2013: AM2A.
- [80] Kojou J, Watanabe Y, Agrawal P, et al. Wavelength tunable Qswitch laser in visible region with Pr³⁺-doped fluoride-glass fiber pumped by GaN diode laser[J]. Optics Communications, 2013, 290: 136-140.
- [81] Wu D D, Quan C J, Guo Z R, et al. Self *Q*-switched modelocking in compact red Pr³⁺-doped ZBLAN fiber laser[J]. Journal of Optics, 2018, 20(8): 085501.
- [82] Luo Z Q, Ruan Q J, Zhong M, et al. Compact self-Qswitched green upconversion Er: ZBLAN all-fiber laser operating at 543.4 nm[J]. Optics Letters, 2016, 41(10): 2258-2261.
- [83] Li W S, Wu J J, Guan X F, et al. Efficient continuous-wave and short-pulse Ho³⁺-doped fluorozirconate glass all-fiber lasers operating in the visible spectral range[J]. Nanoscale, 2018, 10(11): 5272-5279.
- [84] Li W S, Wu J J, Cai Z P, et al. Directly blue diode-pumped green self-Q-switched Ho³⁺-doped fluoride all-fiber laser at ~550 nm[J]. Journal of Lightwave Technology, 2019, 37(22): 5727-5732.
- [85] Li W S, Du T J, Lan J L, et al. 716 nm deep-red passively Qswitched Pr:ZBLAN all-fiber laser using a carbon-nanotube saturable absorber[J]. Optics Letters, 2017, 42(4): 671-674.
- [86] Zhong Y L, Cai Z P, Wu D D, et al. Passively Q-switched red Pr³⁺-doped fiber laser with graphene-oxide saturable absorber [J]. IEEE Photonics Technology Letters, 2016, 28(16): 1755-1758.
- [87] Kajikawa S, Yoshida M, Ishii O, et al. Visible Q-switched pulse laser oscillation in Pr-doped double-clad structured waterproof fluoride glass fiber with graphene[J]. Optics Communications, 2018, 424: 13-16.
- [88] Wu D D, Cai Z P, Zhong Y L, et al. 635-nm visible Pr³⁺-doped ZBLAN fiber lasers *Q*-switched by topological insulators SAs[J]. IEEE Photonics Technology Letters, 2015, 27(22): 2379-2382.
- [89] Wu D D, Cai Z P, Zhong Y L, et al. Compact passive Qswitching Pr³⁺-doped ZBLAN fiber laser with black phosphorusbased saturable absorber[J]. IEEE Journal of Selected Topics in Quantum Electronics, 2017, 23(1): 7-12.
- [90] Luo Z Q, Wu D D, Xu B, et al. Two-dimensional material-based saturable absorbers: towards compact visible-wavelength all-fiber pulsed lasers[J]. Nanoscale, 2016, 8(2): 1066-1072.
- [91] Li W S, Ma Q, Wu J J, et al. Investigation on the effect of output mirror transmission in WS₂-based red-light passively Q-switched

第51卷第1期/2024年1月/中国激光

Pr: ZBLAN all-fiber lasers[J]. Applied Optics, 2017, 56(27): 7749-7755.

- [92] Li W S, Zhu C H, Rong X F, et al. Bidirectional red-light passively Q-switched all-fiber ring lasers with carbon nanotube saturable absorber[J]. Journal of Lightwave Technology, 2018, 36 (13): 2694-2701.
- [93] Wu D D, Peng J, Cai Z P, et al. Gold nanoparticles as a saturable absorber for visible 635 nm *Q*-switched pulse generation[J]. Optics Express, 2015, 23(18): 24071-24076.
- [94] Wu D D, Lin H Y, Cai Z P, et al. Saturable absorption of copper nanowires in visible regions for short-pulse generation[J]. IEEE Photonics Journal, 2016, 8(4): 4501507.
- [95] Zou J H, Kang Z, Wang R, et al. Green/red pulsed vortex-beam oscillations in all-fiber lasers with visible-resonance gold nanorods [J]. Nanoscale, 2019, 11(34): 15991-16000.
- [96] Fujimoto Y, Suzuki T, Ochante R A M, et al. Generation of orange pulse laser in waterproof fluoride glass fibre with graphene thin film[J]. Electronics Letters, 2014, 50(20): 1470-1472.
- [97] Li W S, Peng J, Zhong Y L, et al. Orange-light passively Qswitched Pr³⁺-doped all-fiber lasers with transition-metal dichalcogenide saturable absorbers[J]. Optical Materials Express, 2016, 6(6): 2031-2039.
- [98] Lin H Y, Li W S, Lan J L, et al. All-fiber passively Q-switched 604 nm praseodymium laser with a Bi₂Se₃ saturable absorber[J]. Applied Optics, 2017, 56(4): 802-805.
- [99] Li T R, Wang Z Y, Zou J Het al. Direct generation of 3.17 mJ green pulses in a cavity-dumped Ho³⁺-doped fiber laser at 543 nm [J]. Photonics Research, 2023, 11(3): 413-419.
- [100] Costantini D M, Limberger H G, Lasser T, et al. Actively modelocked visible upconversion fiber laser[J]. Optics Letters, 2000, 25 (19): 1445-1447.
- [101] Zou J H, Dong C C, Wang H J, et al. Towards visiblewavelength passively mode-locked lasers in all-fibre format[J]. Light: Science & Applications, 2020, 9:61.
- [102] Sun H G, Wang L X, Zou J H, et al. Visible-wavelength all-fiber mode-locked vortex laser[J]. Journal of Lightwave Technology, 2022, 40(1): 191-195.
- [103] Ruan Q J, Xiao X S, Zou J H, et al. Visible-wavelength spatiotemporal mode-locked fiber laser delivering 9 ps, 4 nJ pulses at 635 nm[J]. Laser & Photonics Reviews, 2022, 16(7): 2100678.
- [104] Luo S Y, Gu H, Tang X, et al. High-power yellow DSR pulses generated from a mode-locked Dy: ZBLAN fiber laser[J]. Optics Letters, 2022, 47(5): 1157-1160.
- [105] Luo S Y, Tang X, Geng X, et al. Ultrafast true-green Ho: ZBLAN fiber laser inspired by the TD3 AI algorithm[J]. Optics Letters, 2022, 47(22): 5881-5884.

Progress in Research on Visible Rare-Earth-Doped Fiber Lasers: from Continuous Wave to Femtosecond Pulses (Invited)

Luo Zhengqian^{1,2*}, Song Luming¹, Ruan Qiujun^{1,2}

¹Fujian Key Laboratory of Ultrafast Laser Technology and Applications, Xiamen University, Xiamen 361005,

Fujian, China;

²Shenzhen Research Institute,Xiamen University, Shenzhen 518129, Guangdong, China

Abstract

Significance Visible lasers, with wavelengths ranging from 380 nm to 780 nm, have important applications in the fields of display, biomedicine, precision processing, precision spectroscopy, optical communication, and military defense. Among all the different visible lasers currently available, the rare-earth-doped fiber ones attract considerable attention due to their advantages of high efficiency, excellent performance, compact structure, and maintenance-free nature. In this study, different types of lasers, including visible continuous-wave (CW) fiber lasers, visible *Q*-switched fiber lasers, and visible mode-locked fiber lasers, are discussed

comprehensively, along with their output characteristics. The latest research progress indicates that these lasers can cover the entire visible wavelength range and present different colors, such as blue (~480 nm), cyan (~491 nm), green (~520 nm), yellow (~573 nm), orange (~605 nm), red (~635 nm), and deep-red (~717 nm). The output power approaches 10 W for the all-fiber visible lasers, and the pulse duration of the mode-locked pulse is less than 200 fs. Thus, the all-fiber visible lasers play an increasingly important role in underwater optical communication, material processing, laser welding, and spatiotemporal super-resolution imaging. This study summarizes the progress in the research on visible fiber lasers, which provides a strong basis for any future research and application on visible fiber lasers.

Progress With continuous research on fluoride fibers doped with rare-earth metal ions like Pr^{3+} , Ho^{3+} , Er^{3+} , Dy^{3+} , Tm^{3+} , and Nd^{3+} , visible CW fiber lasers, visible *Q*-switched fiber lasers, and visible mode-locked fiber lasers have been actively developed. After nearly 30 years of development, the outputs of blue, green, yellow, red, and deep-red fiber lasers have been scaled up to Wattlevel. Notably, the maximum output powers of red (~635 nm) and green (~521 nm) fiber lasers reach ~5 W and ~3.6 W, respectively, as shown in Fig. 8 and Fig. 11.

Visible mode-locked fiber lasers have the advantages of higher peak power and shorter response time than visible Q-switched fiber lasers. The development of visible mode-locked fiber lasers has been accelerated by the development of high-performance rare-earthdoped fluoride fibers. In 2020, Zou et al. reported the first all-fiber visible-wavelength (635 nm) passively mode-locked picosecond laser with a pulse duration as short as \sim 96 ps. In the following two years, red-light mode-locked fiber lasers were further developed. As shown in Fig. 15, a 635-nm spatiotemporal mode-locking (STML) picosecond fiber laser with the implementation of a Pr^{3+}/Yb^{3+} co-doped few-mode fiber and nonlinear polarization rotation (NPR) technology was reported by Ruan et al. in 2022. By further incorporating a visible ultrafast fiber amplifier, the average power at 635 nm was boosted up to 440 mW, corresponding to a maximum pulse energy and a peak power of 4 nJ and 280 W, respectively, while the pulse duration was shortened to 9 ps. This fills the knowledge gap of STML in the visible fiber lasers. By integrating the NPR scheme into Dy: ZBLAN and Ho: ZBLAN fiber lasers, Luo et al. obtained dissipative soliton resonance pulses at \sim 575 nm and \sim 545 nm, respectively. The average output power at 575 nm reached a maximum of \sim 240 mW, which represents an improvement of almost two orders of magnitude compared to those reported for the latest mode-locked visible fiber lasers. The minimal pulse duration at 575 nm is 83 ps as shown in Fig. 16. Furthermore, by using a shorter gain fiber (Ho:ZBLAN), the smallest pulse duration of 19.7 ps is achieved for the ultrafast true-green passively mode-locked fiber laser. The average output power at 545 nm reaches a maximum of \sim 288 mW, thus filling the "green gap" of semiconductor materials. To obtain mode-locked femtosecond pulses in the visible spectrum, a team from the Laval University reported a mode-locked fiber laser with a compressed external cavity that produced ultrafast pulses at 635 nm. The passively mode-locked ring cavity is based on nonlinear polarization evolution in a single-mode Pr^{3+} -doped fluoride fiber and runs in an all-normal dispersion regime. The compressed pulses at 635 nm have a duration of 168 fs, a peak power of 0.73 kW, and a repetition rate of 137 MHz (Fig. 17). Furthermore, the pulses directly emitted in a visible fiber oscillator by a phase-biased nonlinear amplifying loop mirror have durations less than 200 fs.

Conclusions and Prospects In this study, we review the current progress in research on directly emitting visible fiber lasers prepared from rare-earth-doped fluoride fibers. In summary, among the rare-earth-doped fluoride fiber lasers, the Pr³⁺-doped one is particularly useful for fabricating visible lasers because it can efficiently produce blue, green, orange, red, and deep-red spectra, pumped by GaN semiconductor laser. With fluoride fibers doped with rare-earth metal ions like Ho^{3+} , Dy^{3+} , Tb^{3+} , Tm^{3+} and Pr^{3+} / Yb^{3+} , the wavelength can cover the entire visible spectrum. Significant progress has been made in the development of CW, Qswitched, and mode-locked fiber lasers. However, there remain some unsolved problems associated with visible fiber lasers, such as high power, large pulse energy, and femtosecond pulse generation. For visible CW fiber lasers, the highest possible output power is \sim 5 W at 635 nm. Further improvement of the output power, beam quality, slope efficiency, and ability to cover more visible wavelengths is the key to promoting the development and application of visible CW fiber lasers. Therefore, the research and numerical simulations of new visible rare-earth fibers with high damage thresholds, high-performance visible fiber devices, visible beam combiners, etc. will be of great significance. For visible pulsed fiber lasers, the highest pulse energy that can be obtained is \sim 3.17 mJ at 543 nm, and the shortest pulse duration is 168 fs at 635 nm. The research on STML, femtosecond pulse generation, allfiber configuration operating in more visible wavelengths needs to be performed. Improving the pulse energy, average power and stability, and realizing the visible femtosecond all-fiber lasers are key to promoting the development and application of visible pulsed fiber lasers. Therefore, the new visible rare-earth-doped fibers, saturable absorber materials, and mode-locking technologies need to be explored. Through the innovation of breakthrough technologies, we believe that the visible CW/ultrafast fiber lasers will find widespread applications in the fields of biomedicine, optical communication, material processing, optical microscopy, and scientific research in the future owing to their advantages of miniaturization, high performance, maintenance-free nature, and low cost.

Key words lasers; visible lasers; rare-earth-doped fiber lasers; continuous wave; *Q*-switching; mode-locking